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Abstract

An approachfor solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary
polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face
elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal and hexahedral cells, as well the general cut
cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data struc-
tures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study
upon a series of hexahedral, tetrahedral, prismatic and Cartesian meshesfor an analytic inviscid problem. A series of
laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory and
experimentaldata. A computation upon a prismaticgtetrahedraImesh is made simulating the laminarflow overa wall/cyl-
inder combination.

I Introd,uctign vertex-based schemes, where the control volume is the
dualmesh, elegant formulationscan resultusing a conser-

Unstructuredgrids arerapidly becoming more useful for vative, finite-element framework. By using linear finite-
the simulation of inviscid flows in complex geometries, elements and exploiting certain geometric properties of
The promise of easing the burdenof grid generationfor the tetrahedra,efficient edge-based schemes can be formu-
complex geometries is being met. By exploiting certain lated. The use of tetrahedral grids does, though, have its
geometric properties of tetrabedra and convex unit aspect drawbacks. One stems from requiring that the surface dis-
ratio hexahedra(Cartesian cells), efficientmethods can be cretization match faces in the volume gridexactly, which
found that fill the volume of the domain, with some user makes the surface discretization a controlling part of the
intervention still needed to provide guidance upon cell quality of the volume grid generation. In addition, the vol-
size and possibly stretching directions. Although the vol- ume grids generated axe irregular in the sense that the ori-
ume gridgeneration canbe relatively automated, the sur- entation of the faces of the volumes do not typically
face discretization of complex geometries is still a non- follow a preferred direction.
trivial task. There are presently two separate camps of
unstructured volume gridgeneration: tetrahedral and Car- Cartesian based approaches attempt to overcome these
tesian based. Tetrahedral based mesh generation two problems by filling the volume with regularly ori-
approaches currently being investigated can be grouped ented, nearly isotropie cells, that become general polyhe-
into advancing-front [ 1], advancing-layer [2], and point dra near the boundaries, where these boundary ceils have
insertion [3] methods. Cartesian mesh generation is a rel- been cut from the Cartesian/boundary intersections. This
atively newer approach, which uses a recursive subdivi- has essentially sacrificed grid smoothnessat the boundary
sion of convex, unit-aspect ratio Cartesian cells, and for grid smoothness over the larger portion of the volume.
creates (possibly) non-convex polyhedra near boundaries Other benefits of the Cartesian approach can be traced to
[4, 5, 6]. taking advantage of the geometric regularity of the un-eut

cells, and other implementation specific benefits resulting
The use of tetrahedral elements can provide efficient cell- from the hierarchy of the grid from the grid generation

, centered and vertex-based schemes. For a cell-centered process. The lack of grid smoothness along the boundaries
approach, where the conservation volumes are the tetra- can cause problems for both inviscid and viscous calcula-
hedra themselves, the fixed number of faces and vertices tions, and the resulting solvers are slightly more compli-

• of the controlvolume results in a simpler flow solver.For cated than those based upon tetrahedral cells. These
drawbacks aside, the Cartesianapproach is proving to be a

*Aerospace Engineer, coirier@lerc.nasa.gov very successful method for computing inviscid flows
about complex geometries.
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Both tetrahedraland Cartesian strategies are lacking less, current examples of this approachshow tremen-
whencomputing viscous flows. The currentviscous flux dons potential,whereit is hoped to alleviatemanyof the
formulations dictate that smoothly stretched, nearly problems unstructuredgrid approaches encounter for
orthogonalgrids areneeded to providerobustand accu- computinghighReynoldsnumber,turbulentflows.

rate predictions of viscous flows. The requirementof A common thread to computing flows upon these
gridsmoothnessrises to exlreme importance,sincenon- classes of grids is that the flow solver musthandleboth
smoothness has a direct effect upon needed derivative tetrabedral,pentahedml(prismaticand pyramid) and
quantities at walls, such as skin friction and heat trans- hexahedralcells. Additional capability to handle adap- "
fer, which are typically thequantities desired from such five mesh refinement, "hanging nodes", Cartesiangen-
an analysis. Grid smoothness also has a direct effect crated grids with their cut cells, the extrusion of
upon convergencebehavior, since the typical flux func- quadrilateralcells into hexahedra,or,perhaps,extrusion
tions in use today will produce non-positive stencils if

of othersurfacepolygons wouldalso be desired.In gen-
certaingeometricqualitiesof the meshare notmet [3,4]. eral,this type of solver mustbe able to solve the conser-
To predictskin frictionand heat transferproperlyin mr- ration laws upon general, non-simplicial conservation
bulent flows, high resolution is needed normal to the volumes.
wall dictating large numbers of cells. In addition, from
an efficiency standpoint, grid stretctfing is typically The use of edge-based data structureshave been pro-
needed in only a single direction, normal to the stream posed to solve the Euler/Navier-Stokesequations on
surface, and is not needed along it By construction, mixed-elementmeshes by Mavriplis et al. [12]. In this
Cartesian based methods do notallow foranisotropyof case, a convincing argument is made for the use of
the mesh, while the efficiency of using highly stretched mixed-element meshes, and computationsusing differ-
tetrahedralcells is suspect, ing element types for the same meshes are performed,

rather impressively.In [12] the edge-based formulation
A means that is proposedto alleviate these deficiencies is also used for the discretizationof the viscous terms,
is currentlybeing called a prismaticgrid approach.In which analysis shows to be inaccurateon non-simplicial
this case, bounding surfaces are triangulated, and this meshes. An argument is made that relates this discreti-
bounding triangulation is extrudedaway from the sur- zation to a thin-layerlike formulation, so for certain
face, creating layers of cells thataresmoothly stretched flows, the results might be adequate, but in general, a
in a surface normal direction. Within the layers, the different formulation for the viscous terms might be
desired smoothness and near-orthogonality is retained. desirable. This will undoubtedly not be solely edge-
These prismatic cells are typically grown out a distance

based, but a careful implementation should not detract
from the surface, then a volume mesh generation strat- too much from the approach.
egy is used to fill the void. Examples of this approach
are shown by Melton et al. [7] for the Euler equations, The approach presented here solves the Euler and
where a Cartesian grid was used to fill the void, and a Navier-Stokes equations using a cell-centered, finite-
hyperbolic-like approach was used to generate the pris- volume scheme upon control volumes of nearly arbi-
marie layers. Karman[6] used a similar Cartesian/pris- trarypolyhedraconstructedfrom triangular and quadri-
matic approach for the Euler and Navier-Stokes lateral faces. The four basic cell types of tetrabedra,
equations, where a more algebraic approachwas used prisms, pyramidsand hexahedra are a subset of this,
for the prisms. Cormellet al. [8,9] used a surfacediscret- plus the approachcan compute flows upon Cartesian
ization coupled with a CAD-based surface description, generated grids, and grids where cell refinement has
from which an algebraic approachextruded the prisms, introduced "hanging nodes". It is certainthat by restrict-
and an advancing front mesh generatorfilled the void ing the mesh to be comprisedof simpler polyhedra, a
with tetrahedra. Kallinderis et al. [10] used a similar simplerflow solver results. The approachhere is based
approach,hut did not create the surfacedescriptionfrom upon the premise that by placing less restrictionupon
a CAD basis. By exploiting the semi-structurednature the topology of the mesh, an overall faster turnaround
of the prismatic portions of the grid,Parthasarathyet al. time will result.The additionalcomputationalcomplexi-
[1I] have proposed an efficient strategy to solve the ties associated with this approach are tractable with well
Euler and Navier-Stokes equations. Some obvious thought out data structures and algorithms. One noted
drawbacks of the prismatic approach, in general, still difference from this approachand standard ceil-centered
require some work to resolve. For instance, the bound- methods is that both cell-averaged data and data at the
ary surface discretization will control the smoothness of verticesof the control volumes are used.

the grid near the wall, and care must be taken to ensure The outline of this paper is as follows. The basic data
smoothness at the prism/volume grid interface. Regard- structures used for the approach are explained, then the
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approaches used to solve the conservation laws are eration approach.This approachlends well to a hierar-
shown. The issues regarding vectorization are chy of grids, correspondingto the agglomerationof the
addressed, namely the coloring of the different opera- parent grid and the constructionof furthergrids in the

• tions upon the basic data types. The accuracy of the sequence via solution adaptive mesh refinement. This
approachis assessed using an analytic solution to the will be representedhierarchicallyin the griddata struc-
Euler equations for the four basic cell types mentioned turealso, so that each gridwill have pointersto its par-

. above, and Cartesiangenerated grids.The laminarflow ent and children.Although multigridacceleration is not
overa selection of problemsare thenmade,and compar- employed at this stage of the solver development, the
ison is made to theory (flat plate) and experiment use of the grid dataentity shouldaid in its implementa-
(developingduet flow). To demonstratethe capabilityof tion. The griddata type mightalso be useful forparallel
computing upon prismatic!tetrahedral meshes the computations, by holding the spatially decomposed
approachis used to compute the laminarflow about a data.
rightcircular cylinderupon a flatpIateusinga gridgen-
eratedbyConnell et al. [8]. II.b Cells

Cells define the conservation volumes upon which the
II Data and Data Structures conservation laws are solved and provide a place to

store cell-averaged data, flux balances and other cell-The compressible Euler and Navier-Stokes equations
axesolved in three-dimensions in a cell-centered, finite- based quantities. Each cell is comprised of an arbitrary
volume format upon a mesh of polyhedra where each number of faces, where a list of pointers for each face is
polyhedron is created from an arbitrarynumber of trian- maintained in the cell. Ceils are accessed by a list of
gular and quadrilateral face elements. This particular pointers to the cell data structures. For vectorizationof

cell-to-vertex scatter operations, ceils are grouped intofinite-volume approachuses data at both ceil centers and
like vertex number groups and colored (see Section IV).mesh vertices, which implicitly usesall nearest neighbor

cell data, without having to store its connectivity. Since ILe Faces
the governing equations are being solved in conserva-
tion law form using a cell-centered scheme, the data Fluxes are integrated across faces, and the result of the
structures used in the code are designed for such an integrationsare scattered to the cells which arelogically
approach. Three separate data entities are identified that left and right of the face where the logical orientation is
make up the mesh and are needed to perform the calcu- determined by the face normal vector. Faces contain
lations: vertices, faces, and cells. These form a hierar- pointers to the cells that arelogically left and right of the
chieal-like relationship with each other, since faces are faces. Each face contains a list of pointers to globally
constructed from vertices and ceils are constructed from unique vertices defining the geometry of the face. For
faces. Edges can be obtained from faces/cells, but since practicality, the faces must be either triangular or quad-
they are not used directly in this cell-centered scheme, a rilateral. The needed geometric data for the flux integra-
separate data entity for them is not maintained.The sep- tion (Gauss points, area vector) are stored in the face
arate operations needed in the solution of the conserva- data structure, but may also be computed from the face
tion laws axe cast as operations upon these data types. A vertex data. Cell faces are constructed from the posi-
collection of vertices/faces/cells which make up a por- tively (outward pointing normal) ordered vertex lists of
tion (either complete or by some geometric decomposi- the input cell definition. To create a global list of unique
t.ion)of the entire domain are further grouped together faces, an octree-based, fixed bucket size searching pro-
into data entities called grids. Due to the hierarchyof the cedure is used to match already created faces. Faces are
data entities, much information can be obtained directly, sorted according to Gauss point location in space, and
such as cell-face-ceil connectivity. To clarify these data are matched by their ordered vertex lists. The tree auto-
entities, the following briefly describes each entity, the matieally sizes itself during the creation phase, and
data it contains, and how it is stored and maintained, prunes itself to zero length when it is not needed. For a

, multi-block grid or a grid with different grid types in
II.a Grids each domain, there is no need to supply inter-block or

inter-grid connectivity data, since this face matching
Grids are composed of lists of cells/faces/vertices upon

• which the computations axe performed, as well as lists procedure will automatically ensure the proper face
of boundary faces and boundary vertices. All loop color- matching across inter-block or cell-refinement bound-

aries. Interior and boundaryfaces are maintainedanding information is also stored here. It is intended to
eventually perform multigridacceleration, where each processed in separate lists. The face data is not only

usedfor flux evaluation,butare also usedin the upwind,grid in the sequence will be constructedvia an agglom-
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inviscid reconstructionprocedure explained in Section stage explicit scheme with a spatially varying time step,
III.b. For vectorizationpurposes,the face loops are also based uponboth hyperbolicand parabolictime step con-
colored (Section IV). For boundary condition appliea- straints, is used to updatethe solution.Contraryto most
tion, ghost cells axe created for all boundary faces, and cell-centered approaches, the solution procedure here
the data used in the cell-to-vertex scatters. Boundary relies upon both vertex and cell-averaged data. The use
condition faces of the same boundary condition type are of both vertex and cell-averaged data is also used in the
groupedtogether, and these are also colored. USM3D series of unstructuredmesh solvers developed

by Frink [16], and has inspiredsome of the generaliza-
]I. d V_rti¢_ tionsto mixed-volume grids, shown here.

The vertexdata structureshold the spatial coordinatesof III.a Vertex Data Interpglati9nthe verticesof the mesh, and provides a list of pointers
to cells which haveedges of faces that are subtended by The data at the verticesof the mesh is obtained from the
the vertex.This provides a means of obtaining the solu- cell-averaged data by a linearity-preserving interpola-
tion at the vertices from the cell-centered data, which is tionprocedure. This interpolation procedureis similarto
needed to compute the upwind, inviscid reconstruction, that presented by Holmes and Connell in [17], where it
to form the viscous fluxes, and to plot the solution. Vet- is termed a linearity-preservingLaplacianweighting. By
tex data is obtained in a nominally linearity-preserving considering an interpolation formula that interpolates
manner, as shown in Section III.a. As in the face data, the solution at the j-th vertex from the n cells surround-

upon input, a self-expanding, bucket searching oetree ing itas
procedure is used to provide unique vertex data, where

sorting and matching is made according to the spatial fj = Xnfn (1)location of thevertex. This makes multi-block and n

multi-grid type data definition easier, since theburden where the _ are found from the weights of a pseudo-
of vertex matching is taken by the octree, and not the Laplacian noperator,
grid generation.

!l.e Input Data Tvpe_ L (/) = _o n (fn-fj) (2)
n

The flexibility of the conservation volume construction
as

is evident by the various standard grid data types that
can be read in by the code. The solver is presently con- co

n (3)figured to read in 5 types of grid data: PLOT3D data _n =
[13], VGRID data (see [2] and others), an input format _co n
corresponding to the prismatic/tetrahedral grid genera- n

tion system described in [8,9,14], and a format corre- Linearity preservation is guaranteed by requiring (2)
sponding to the tetrahedral generator of the FELISA satisfy
system[15]. Another grid type is also available, termed
here as the MVG (Mixed Volume Grid) type, which L (x) = L (y) = L (z) = 0. (4)

defines each cell as being constructed of an arbitrary By expanding the weights about unity in terms of linear
number of triangular and quadrilateral faces. Cartesian basis functions, as
generated grids are input as the MVG data type, since
the cut cells generated by the Cartesian grid generator

produces polyhedra that are not of the four types listed _n = 1 + Lx (Yen- xj) + _,y (Yn - Yj) + _z (Z'n- _) (5)
above. All of the 5 specific data types can be translated
into the MVG format, a 3x3 linear system is found for the _,. which is inverted1

beforehand. This process is purely geometric, and there-

HI Solution of the Conservation Laws fore is precomputedfora given mesh, and only requires
a simple cell-to-vertex scattering procedure. By provid- ,

The Euler and Navier-Stokes equations cast in conserva- ing higher-order constraints in (4) and expanding with
tion law form are solved in a cell-centered, finite-vol- higher-order basis functions in (5), quadratic-preserving
ume format upon the polyhedral control volumes. Both reconstructions can also be found [4] but are not used
upwind and central-difference approximations of the here, since only linearity-preserving cell- and face-
convective fluxes are used, and a directed gradients pro- based reconstructionsare used. In practice, the weights
cedure is used for the viscous fluxes. A simple three- (5) are restricted 0 < co < 2.n
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m.b Upwind Flux Construction To obtain the cell volume andcentroidlocations the flux
on the right handside of (9) is takento be

The upwind scheme follows standardpracticeused for
unstructuredgrids:A reconstructionprocedureis used

" to reconstruct the solution locally within each ceil, (x, O,O) for V"

which is then followed by an upwind flux construction _x2 /at the cell faces. The reconstructionwithin each cell is G = _--, O,O_ for 2V (10)
used to provide states to an approximate Riemann (xy, 0, 0) for_V

solver, which is used to compute the fluxes. The fluxes (xz, 0, 0) for _V
arethen scattered to the logical left and right ceils of the
face. The reconstruction (8) preserves linear data, and for a

general mesh implicitly includes all local cell data in the

rob.1 Reconstruction construction of the gradient through the vertex data
interpolation. Since the faces are colored for vectoriza-

The reconstructionof the solution withineach conserva- tion of the integration of the inviscid and viscous fluxes,
tion volume is found by performing a surface integral this procedure follows closely the overall face-based
over the conservationvolume itself. Since the data at the solutionmethod.
vertices of the conservation volume are found in a lin-
earity preserving manner, a second-order, Gaussian It is instructive to note that when applied to a mesh of

tetrahedra, this procedure results in the same formula
quadrature guarantees that the reconstructed solution is found by Frink [16],also pointed out by Mitchell [18].
also linearity preserving. For a general control volume,
consider finding the gradient in the reconstruction

Illb.2 Upwind Flux Construction

----.-.Ou(xi_Yci) (6) Three popular upwind flux functions are available:/d

+dx i" Roe's FDS [19], Van Leer's FVS [20] and Lion's
AUSM+ [21]. The reconslruction provides the left and

by applying a divergence integral over the volume right input states at the faces, which then use the approx-
imate Riemann solvers noted above to compute the flux.

_udV = _u_lid(_V). (7) The upwind fluxes are then scattered to the cells.Oxi
v _v IH.c Central Differencing with Explicit,

Scalar Dissipation
By replacing the surface integral in (7) with a numerical
quadrature, the gradient can be found by a face based A conservative formulation corresponding to centrally

differenced fluxes with blended second- and fourth-
scatter operation. The surface integral is replaced by a
single point quadrature so that the gradient is found to order dissipation is also available in the solver. Follow-
be ing [22], at a given face, the flux is formulatedas

I(FL+ -d0u 1 F--
_x. = p X uoN_ (8) Vn) (11)jaces

where the dissipative flux, d, is constructed from a
where Ni is the i-th Cartesian componentof the out- blending of a first-differenceand pseudo third-differ-

ward facing (non-unit) normal, and uG .is found by ence. When integratedover the faces of thecontrol vol-
evaluatinga linearor bi-linear expansion m the face at ume, this yields a blended Laplacian and Biharmonic
the face Gausspoint for three- and four-vertexedfaces, operatorwhich is used to dissipatespurious oscillations.
respectively. The cell volumes and centroids are found This scalar dissipativeflux is formulatedas
beforehand by using a third-orderGaussianquadrature

of anotherapplicationof thedivergence integral.For the d = dI - d3
general flux Gi , applicationof the divergence theorem

replaces the volume quadraturewitha surfaceintegral, dI = 8e (Z)(WR- Wt) (12)That is

_Gi d3 = 88(4) [D2 (WR) _D2 (WL) ]

_xidV = __GifCid(_V) (9) The pseudo-second differences formed for each cell,
v Ov
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D2 , represent undivided approximations to Laplacians Au 1 = (Vu) • 51
using only differences about faces. That is, for an arbi-

trary function, f Au2 = (Vu) • 52 (17)

D20 _ = _ (fR-fL) (13) au3= (Vu)'53 "
faces This results in a 3x3 linear system for the unknown gra-

where the R and L refer to the logically oriented cells dient, as ._
sharing the face.

The coefficients E(2) and 1;(4) are used to scale the

fust and pseudo-third differences with the cell size, and IAxl AYl Az_] [_t [_u_l

to turn off the fourth-order dissipation across shocks. Ax2 Ay2 Az = u (18)
The coefficient of the first-difference in (12) is com-

puted as a normalized second-difference of pressure, 3 AY3 Az3J[UzJ /Au3J
acting as a shock sensor

The choice of the base vectors, 5 i is taken so that 51

D2 (P) (14) joins the two centroids of the cells that share the face,
v = _, (PR + PL) and the two others lie in the plane of the face. When a

linearly-exact procedure is used to produce the data atfaces
the vertices, this procedure preserves linear gradients.

This gives the coefficients The viscous flux construction, evaluation and scattering
to the cell residuals is done on a face basis, which for

i;(2)= lc2max(vR, VL) vectorization, depends upon loop coloring, as is

max ['0' (K4 - E(2) ")'IL_, )_1 (15) explained in the next section.1;(4)=

IV Loop Colorim, for Vectorization
Standard values of the dissipation coefficients are used Vectorization of the solver is pursued for the use of

as !2 = 1/2 and K4 = 1/32 .Thefactoro scales CRAY class vector machines. If the solver is used upon
the dissipation according to the maximum eigenvalue of non-vector machines, such as workstations, or is made
the fluxjacobian as parallel, the basic structure and loop indexing used for

parallelization will result in a negligible penalty. The

= (o L +6R) preprocessing time for the loop colorings is marginal.
2 (16) There are primarily two different types of scatter opera-

°L/R=(luax+%. wzl+a)I tionsthatmustuse loop coloring to obtainveetorization.L/R Loops over faces scattering to cells are performed for
the inviscid reconstruction, time-step computation and

On a uniform mesh, this dissipation results in a blended for the viscous and inviscid flux integrals. Loops over
Laplacian/biliarmonic operator, ceils, scattering to verti.cesare performed to interpolate

the data at the vertices from the ceils. All loops which
Hl.d Treatment of Vi_cous Fluxe_ are to be vectorized are done so by compiler directives

The viscous fluxes are computed following a directed to ignore vector dependencies. The vectorized code
gradients procedure suggested by Mitchell [23]. This ports to non-vector machines with no changes.

procedure is linearly K-exact, and produces the same The face loop coloring is performed in a heuristic fash-
gradient computed using a divergence-based reconstruc- ion as indicated by the following pseudo-code.
tion that preserves linear data, as in [24] and [4], com-
monly called a diamond-path reconstruction.The ideais at_coZors=O/* loop over all feces */
based upon taking the inner productof the gradient with for(all faces)
threevectorsjoining locations where the data has been aaaea._coZor=-false
obtained in an at least linearity-preservingmanner.That /* loop over all avaiznSZe colors */

is, for the three vectors 51, 52, 53 for(all colors &&leaded_color)L_clrd=is_lef_coZored_color(color)
R_clrd=is_right_colored_color(color)
/* if left and right cell are not color
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color t_e: color */ pos = 2 << 0
if [ !L_cZz_ && IR_clz_) coloz_O

face color:color wh_le( (_2__st & pos) I: O)
a_ed_coloz_rue _os--;_s << 1

endif col or++
endfor endwhile

/* if not colored, color it color */ return color

if(tsdded._color) This colors the loops within a verticity-group of roughly. face color=N_colors

tt_coZorB+=z even length loops, with the last one or two loops of
enaif smaller length. Representative performance values of

endfor the vectorizedcode are given in the following sections.
This results in roughly even-length loops of faces,
except for the last one or two colors, which typically V Validation and Demonstration
have a smaller numbers of faces. The balance of the coI-

The accuracy of the solution procedure is first assessedors is dependent upon the order that the above algorithm
visits the faces, but using the input ordering appears to by performing a grid refinement study upon a sequence
be sufficient, of related meshes of hexahedra, prisms, tetrahedra and

those produced by a Cartesian grid generator. A devel-
Vectorizationof the cell-to-vertex scatteringoperation is oping laminar boundary layer and a developinglaminar
complicated by the fact that the cells in the mesh may duct flow are shown. Also shown is the laminar flow

have a variable number of vertices. This is overcome by computed about a fiat plate/cylinder intersection, upon a
grouping cells into groups of like vertex number, termed prismatic/tetrahedral grid generatedby Connell [8].
here as verticity. Within cells of the same verticity, cells
are colored to avoid scattering to the same vertex in the V.a Grid Refinement _;tudv: Supersonic
same loop. A binary-encoded coloring history of each Vortex
vertexis used to group the cells into colors. The follow-
ing pseudo-code illustratesthe approach. An analytical solution to the Euler equations is used to

assess the accuracy of the convective flux discretization
schemes of the solver. This flow field has been used by

/* zero _¢seory _or nzl vert:zces */ Aftosmis et al. [25] to investigate the effects of gradient
_ortall _rtices) limiting and by Luo, et al. [26] to assess an improved

hise-O reconstruction scheme for triangular meshes. The solu-
e=afo= tion is a relatively simple function, and also lends itself

/* loop over l_e-v_icity cells *1 well tOa grid refinement study,since although the flow
ncoZors=o _ simple, there are considerable gradients in pressure
_or(azz cells; and density across the domain. By assuming an isen-

/* construct a s_gle history for this tropic flow described by a line vortex situated at the ori-
cells" vertices usC_g bitwise or */ gin, parallel to the z-axis,the solutionis
v_C=0

for(all vertices in cell)

enafor T--=
f_a_c=first_a_ail_color(v_C) l .

=,_:1 p = (T)I/(¥-I)for(allcolors< fa_c) Pi -_i-

endfor =

for(allverticesin cell) _i -_i-
hist=hist [ hum

• endfcr U = UCOSO
ozxteor v = Usin0

The routine first svailcolor performs bitwise shifts w = 0
• upon the cell-encoded vertex history and finds the first

where the i-subscript refers to conditions along a refer-available color for the vertices in the cell.
ence (inner) radius ri, _ = r/_ the polar angle in the
z-=constantplane is 0 =atan (y/x) , and the flow

inE first_ava1_color{vChise) speed non-dimensionalized by the inner radius speed is
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U = 1/_. The domain is taken to be for
_ [1,1.384],z_ [0,1] and 0_ [0,rt/2], and

ac irrai toM i = 2.25.This is a two-dimensional problem, so d_-
ing the refinement sequence, the discretization of the •
grid in the z-direction is kept the same for all of the
grids. Figure 1 shows Math number contours for this
flow.

Tetrahedra Prisms, p_id=l

Prisms,p._id=2 Prisms, p._id=3

Figure 1. Mach contours, compressible (Base) Hexahedron
vortex flow.

A sequence of related grids are generated based upon a Figure 2. The five, hexahedra-derivedgrids
sequence of structured hexahedral grids with 5x5x5, types used in the mesh convergence study.
10xl0x5, 20x20x5 and 40x40x5 cells. Tetrahedral grids
are created f_om the hexahedral meshes by creating six
tetrahedra from each hexahedra. Three families of pris-
matic grids are generated from the base hexahedral
meshes by creating prisms from the hexahedra whose
orientation of the normal vector of the triangular faces
in the prisms lie along the three different computation
coordinate axes. A sequence of Cartesian grids are also
generated, which are also used to assess the accuracy,
but are not directly related to the five grid sequences
above. Figure 2 shows the relationships between the
hex-related meshes, while Figure 3 shows the intersec-
tion of a z=constant plane through a representative Car-
tesian mesh. Note that for plotting purposes, cut-
Cartesian cells that cannot be represented as either hexa-
hedra, pyramids, prisms or tetrahedra are split into a cop Figure 3. z=constant cut through a
lection of tetrahedra and pyramids. For these cut cells, a Cartesian mesh
fictitious point located at the cell centroid is inUoduced,

which is used to create, correspondingto each triangular A plot of the L 1 norm of the density error

or quadrilateral face of the cell, atetrahedronorapyra- e O =.[P-,Pexac_ agai'nst a representative two-mid, respectively. This procedure is only needed for almenslonaJ lengm scale rouna on each mesh is shown
plotting purposes, and is not used in the flow solver, in Figure 4. This length scale is introduced merely for

the estimation of the truncation error order, and is not
representative of a computational cost or efficiency
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norm.Theintentof thisstudyis onlyto gaugetheaccu- are all interrelated,sincetheyarederivedfromthe same
racy and correctnessof the inviscidfluxconstructions mesh,while the Cartesianis not. All meshesare made
and is not an attemptto assesswhetheronemeshtopoi- with a constantspacingin the z-direction,resultingin a

• ogy is superior to another.That assessmentwould stackof fourcellsinthez-direction.TheCartesianmesh
requirea carefulcomparisonof costas well.Thisrepre- and the bexahedralmeshare shownto havenearly the
sentativelengthscaleis calculatedas sametruncationerrorforthe samelengthscale,whichis

, attributableto the similarityin the reconstruction/flux

constructionschemesthattheyuse. In [27] an analytic12d = solutionof the Euler equations,Ringleb's flow, was
(20) used to comparethe error computedby the Cartesian

Vn approachand a structuredmesh approach.There, a
V = nCells structuredmesh,whichused an upwindcoordinate-by-
ave nCells coordinatereconstruction,was shown to be slightly

All calculationswere performedusingthe upwindfor- more accuratethanthe Cartesianapproach,whichused
mulationIII.b, with the FDS schemewithoutgradient a multi-dimensionalreconstruction.The results shown
limiting, herecomparethetruncationerrorbetweena sequenceof

hexahedraland Cartesian meshes, where the multi-
dimensionalreconstructionshownin Section IIIb.1 is

10° .................................. used.
H Hexahedra

Prisms: p_id=l 10 0 ...................................
O--- <>Prisms:p_id=2
&- -A Prisms:p_id---3 _ _ 1o----_ Hexahedra

1 0 4 <_--<_Tetrahedra / [/ ]t3----_ Prisms: p_id=l

..... -VCartesian __ /1 /)'/ [<)---<)Prisms: p_id=2, ]A---A Prisms: p id=3 5_,_._

i/f_'/i_ I_'" - <1Tetrahed_-a //it_ /.,.,, lo-'
,.11o

lo" lo ' ff
" "1

V ._

10.4 ..................................
104 10_ ,10.2 10"1 10° 10"3 ...............................

t,>t3 10.4 10"3 10"2 10"1 10o

Figure 4. LI -norms for upwind scheme 12D

The orders of the discrete truncationerror, found by Figure 5. L 1-norms for central scheme.
• computingthe slope on a logarithmicplot of the final

two meshesin eachsequence,forthe sixdifferentmesh A series of calculationswerealso madeusingthe cen-
sequences,areshownin TableI, in the Appendix. All tral-differenceflux schemewith added dissipation on

. schemesweregloballysecond-orderaccurate,whilethe the exactsame meshes.Figure5 shows the computed
tetrahedraland plane_id=l meshes had a first-order L1 norms against thetwo-dimensionallength scale and
max-norm. TableIIshowstheasymptoticordersof accuracy.

WhenviewingFigure4, it is impoltantto keepin mind As is indicatedby theorderof theL**norms,thepartic-
that the hexahedral, tetrahedral and prismatic meshes ular implementation ofthe dissipative fluxconstructions
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is not uniformlysecond-orderaccurate. It is surmised for both the upwind and centralschemes are shown in
that the constructionof the dissipative fluxes near the Table III and Table IV for the final meshes in each
boundarieshasreduced the accuracyof tbe scheme. The sequence. Also shown in are the rates for the same
results shown here constructthe third-differenceopera- meshes and algorithms,but on the CRAYC-90, eagle,
tor at the boundaries using ghost-cell information.A using the CraystandardC compiler,Version4.0.2.7.

comparisonto a presumablyless accurateformulation It is importantto considerthe particularway the differ-
which does not use ghost cell data indicatedno appre- ent schemes are compared to one another in Figure4, €

ciable improvement. Figure 5 and Figure6. The length scale has been con-
Since the discreteerrors forboth the upwindandcentral structedto deduce the orderof the schemes. A compari-
difference schemes are available for the same meshes, son thatwouldcritically gauge the different approaches
one can also compare these two schemes. Figure 6 upon the differentmesh topologies must use some mea-

shows the L 1 norms for the hexahedral,tetrahedraland sure of computationalefficiency,perhapsmeasured by a
Cartesian meshes, memory-time integral. This efficiency will be greatly

effected by the tailoring of the solver to a particular con-
vective flux discretization (i.e. central or upwind) and

"10° ................... for a particular mesh topology. The intent of this conver-
Hexahedra: Upwind[

O-----OHexahedra:Central[ gence study is only to verify the accuracy of the particu-
J_---_Tetrahedra:Upwind_ _ 0 lar flux constructions and to validate the mixed volume
D-------_Tetrahedra: CentralI 2" /- grid approach, and not to promote one mesh topology

" " " over another.

10"1 _----------Dc_=Uc respectively. The mesh is stretched in both the stream-

V.b Developing Laminar Flow over a Flat
Plat.._..._ge
The flow developing over a flat plate which is aligned

L110.2 with the free stream is computed next. A mesh of hexa-hedra is generated with 31, 21 and 5 points in the
streamwise, plate normal, and span-wise directions,

wise andnormal directions. Flow conditions correspond

"10.3 to a freestreamMach number of M = 0.25 and a
Reynolds number based on plate length of
Re = 50, 000. The code is mn using the upwinding
formulationand the FDS scheme. As in the previous

.................... case, a hexahedmlmesh hasbeen constructed,and from

10"4"10 -4 .....10 .`3 "10"z "10"1 i 0 ° this mesh, other derived mesh types are found. A tetra-
hedral mesh and a prismatic mesh with the p__id=2 are

12D constructed from the base mesh, and the prismaticmesh
is shown in Figure 7.

Figure 6 Comparison of L, -riorms for
the upwind and central schemes.

As is seen in the plot, there is an appreciable difference
between the truncation error of the central and upwind
schemes on the Cartesian mesh, where the central
scheme exhibits nearly ten times the error on the finer
mesh than the upwind scheme. This difference in error
is not at as severe on the tetrahedral and hexahedral •
meshes, where the central scheme error is approxi-
mately four and six times more than the upwind formu-
lation, respectively.

The grid convergence study was performed on IBM
RS6000, model 590 workstations, using the xlc com-
piler with standardoptimizations.The processing rates Figure 7. Prism (p_id=2)mesh derivedfrom hexahedral mesh.
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Figure8 and Figure9 showthe computedu- and v- _V..cDeveloping Laminar Fl0w in a
velocityprofilesplottedagainstthe similaritycoordinate RectangularDuct
11,forthe threemeshesata locationonthe mid-planeof
the plate, with a Reynoldsnumberbased on distance The developinglaminarflow in a five-to-oneaspect

" from the leadingedge of Re = 40,000. Each mesh ratioduct is computednext,andcomparedto theexped-
producesgoodresults, mentaldataof Sparrowet al. [28].Thecomputationsare

performedfor a Reynoldsnumberbased on inlet mass
flowrate andhydraulicdiameterof500 fora ductlength

10.0 -. = of 31.25inches.The5:1aspectratioducthasmajorand
• Sexah_ra minorwidthsof 3.125and0.625inches.The exit pres-
• Prisms: p_id=2 sureis specifiedaccordingto theexperimentaldatafrom

8.0 _Tetrahedra
-- Theory theexperimentallymeasuredpressuredropcorrelation

6.0 K = Pt'*_-P(z) 763(z/D_1 2 = 1.89+ . k--_'e) (21)
_P_

whereD is the hydraulicdiameter.Theinlettotal condi-
4.0 tions are set so that the Maeh number basedon area-

averaged axial velocity is M = 0.1. A 15x15x21
hexahedralmesh is constructedwith stretchingin all

2.0 directions.A tetrahedralmesh is also constructed,as
before, from the base hexahedralmesh.These calcula-
tions use the upwindingformulationwith the FDSflux

0"O.0 0.2 0.4 0.6 0.8 1.0 function.Figure 10 and Figure 11 comparethe com-
U/U putedcenterlinepressuredropandstreamwisevelocities00 from the hexahedraland tetrahedralmeshes to the

Figure 8. u-velocity profiles at experimentaldata of [28].Agreementwith experiment
Re = 40, 000. is consideredgood.X

0 ' " " ' •

. • Experiment [
10.0 • H_a I _ Hexahedral Mesh [

• Prisms: p id---2[

• Tetral_ra I • 8 _--v Tetrahedral Mesh[
8.0 -- Theory [

6
6.0 I-

4.0 _ 4

2.0 2

- i , i , i , i , i 0 , i , i , I , i ,

°'°o.o 0.2 0.4 0.6 0.8 1.o 0 2 4 6 8 10

V/UooO( ) (z/D)xlo2
)Figure 9. v-velocity profiles at

Rex -- 40, 000 Figure 10. Computed and experimental
axial-pressure loss.
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2.0
• Experiment

Hexahedral Mesh

1.8 _..........._ Tetrahedral Mesh

wCL 1.6 S ° Figure 12. Perspective view of
1.4 boundaries of prismatic/tetrahedral

mesh for wall/cylinder.

1.2

1.0 .........
0 2 4 6 8 0

f z/D_×lO 2
/

Figure 11. Computed and experimental
centedine, axial velocity.

V.d Wall/Cylinder.Flow: Prismatic/
Tetrahcdrlal Mesh

Figure 13. Upper boundary of prismatic/
The flow about a wall/cylinder combination is computed tetrahedral mesh
using the mixed volume grid approach. The mesh was
generated by the prismatic/te_ahedral mesh generator
developed by Connell et al. [8], for which the solver
provides an input data type. Flow conditions correspond
to a Reynolds number based upon cylinder diameter of
Re = 50 and a freestream Mach number of

M_ = 0.25. Figure 12 shows a perspective view of the x,
grid, while Figure 13 shows a slice through the mesh at
the mid-plane, showing the prismatic mesh about the
cylinder. The mesh has 9810 prisms and 19243 tetrabe-
dra. The calculation converged approximately four
orders of magnitude in 10,000 iterations, using 5011
seconds of cpu time and approximately 4.8 Mwords of
storage on the Cray C-90, eagle. Figure 14 shows a per-
spective view of speed contours of the computed solu-
lion at various planes slicing the volume mesh, showing
the boundary layer growth along the wall, the upstream
influence of the cylinder and the momentum deficit in
the wake. The predicted solution appears to be symmet-
ric. Figure 14. Speed contours throughvolume
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VI Concluding Remarks and Future Efforts experiment were shown for these cases. To demonstrate
a prismatic mesh type calculation, a prismatie/tetrahe-

An approach which solves the compressible Euler and dral mesh, supplied by Connell et al. [8], was used to
Navier-Stokes equations uponcontrol volumes of nearly compute the flow about a cylinder/wall configuration.

. arbitrary polyhedra has been presented. The conserva-
tion laws are solved using a cell-centered, finite-volume

formulation where the control volumes are created from Ackn0wledmnents
an arbitrary number of triangular and quadrilateral

faces. This flexibility allows the unified treatment of The authors gratefully acknowledge Dr. Stuart Connell
structured, unstructured, prismatic, and Cartesian-cell and Dr. Mark Braaten at the GeneralElectric Corporate
based grids with a single flow solver. The basics behind Research and Development center for supplying the
the organization and interrogation of the data structures mesh and input data for the wall/cylinder prismatic/tet-
has been explained, rahedral mesh and Mr. R. Jeffrey Benko of The Univer-

The mixed volume grid approach uses both cell-aver- sity of Michigan, Department of Aerospace Engineering
aged and vertex data. The convective terms of the gov- for the Cartesian meshes used in the mesh convergence
eming equations have been treated with both an upwind study. Special thanks go to Dr. N. T. Frink of NASA
and central differencing approach. The reconstruction Langley Research Center for his helpful discussions,
method used for the upwind flux discretization uses an comments and supplied references. Trong Bui of NASA
application of the divergence theorem upon the actual Lewis Research Center graciously supplied the experi-
control volume itself. The viscous fluxeshave been con- mental duct flow experimental data.

stmcted using a directedgradientsprocedure.

An analytical solution to the Euler equations, a super- Appendix A: Mesh Convergence Study:
sonic vortex, has been used to assess the accuracy of the
approach, and hasbeen used to compare results amongst Asvmpt0tic Slopes
the different grid types and between the upwind and
central difference approximations. A refinement

TABLE I Asymptotic Slopes of Error Norms:
sequence of four hexahedral meshes was used to gener-
ate 3 families of prismatic meshesand a sequence of tet- Upwind Formulation

rahedralmeshesby subdividing each hexahedra into the L 1 L,
respective volume type. In addition, a Cartesian gener- Grid Type Norm Norm

ated mesh was used and compared to the others. Here, Hexahedral 2.08 1.94
the bulk of the Cartesian generated volume is comprised
of axes-aligned hexahedra with arbitrary polyhedra Tetrahedral 1.77 0.93
along the boundaries created from the geometric inter- Prismatic: plane_id=l 1.68 0.88
section of the boundaries and the Cartesian cells. The

Prismatic: plane_id=2 2.05 1.63
grid refinement study showed that the hexahedral based
mesh had the lowest error, while the tetrahedral mesh Prismatic: plane_id=3 2.02 1.78

had the highest. In addition, the global error norms indi- Cartesian: Az = 1/4 2.03 1.73
cated that for the same mesh the upwind formulation
was more accurate than the central difference approach.

The Cartesian grids were shown to give an error compa- TABLE II Asymptotic Slopes of Error Norms:
rable to the hexahedral meshes.The upwind formulation Central Differencing Formulation
was shown to be globally second-order accurate upon
all the meshes, and locally second-order accurate on L 1 L
some of the element types. The central scheme was Grid Type Norm Norm
shown to be globally,marginally second-order accurate, Hexahedral 1.82 1.18

" and first-order accurate locally. This reduction in the
order for the central scheme was surmisedto be caused Tetrahedral 1.17 0.78

by the construction of the boundary dissipative fluxes. Prismatic: plane_id=l 1.85 0.78

Laminar calculations have been made for the develop- Prismatic: plane_id=2 1.33 1.02

ing flow over a fiat plate for hexahedral, prismatic, and Prismatic: plane_id=3 1.82 1.02
tetrahedral meshes and for the developing flow in a 5:1
aspect ratio duct. Favorable comparisons to theory and Cartesian: Az = 1/4 1.96 1.06
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Appendix B: Proge_$ing,Rateson Final Cell-BasedSchemefor the EulerandNavier-
Meshes,used in Convergence Study Stokes Equations. PhD thesis, The Universityof

Michigan, Department Aerospace Engineering.
Also published as NASA TM 106754, 1994.

TABLE m Cell processing rates (seconds/ [5] J. Melton, M. Berger, M. Aftosmis, and
iteration/cell) on final meshes, upwind scheme M. Wong. 3D Applications of a Cartesian Grid

Euler Method. AIAA 33rd Aerospace Science
Meeting, AIAA Paper 95-0853, 1995.

RS6000 CRAY
Model C-90, [6] S. Karman. SPLFITLOW: A 3D Unstructured

Grid Type 590 eagle Cartesiani_smatic GridCFD Code forComplex
Geometries. AIAA-95-0343, 1995.

Hexahedral 3.41e-4 2.51e-5

Tetrahedral 2.27e-4 1.50e-5 [7] J. Melton, S. Pandya, and J. Steger. 3D Euler
Flow Solutions using Unstructured Cartesian and

Prismatic:plane_id=l 2.88e-4 2.04e-5 Prismatic Grids. AIAA paper AIAA-93-0331,

Prismatic: plane_.id=2 2.89e-4 2.02e-5 1993.

Prismatic: plane_id=3 2.79e-4 2.05e-5 [8] S. Connell and M. Braaten. Semi-Structured

Cartesian: Az = 1/4 3.47e-4 2.20e-5 Mesh Generation for 3D Navier-Stokes
Calculations. GE Report 94CRD154, 1994.

[9] S. Comaell, J. Sober, and S. Lamson. Grid
TABLEIV Cell processing rates (seconds/ Generation and Surface Modeling for CFD. To

iteration/ceil) on final meshes, central scheme Appearin the 1995 NASA Surface Modelingand
Grid GenerationConferenceProcedings, 1995.

RS6000 CRAY [10] Y. Kallinderis, A. Khawaja, and H. McMorris.
Model C-90, Hybrid Prismatic/Tetrahedral Grid Generation

Grid Type 590 eagle forComplexGeometries.MAA paperAIAA-93-
Hexahedral 1.84e-4 1.94e-5 0669, 1993.

Tetrahedral 1.26e-4 1.14e-5 [11] V. Parthasarathy and Y. Kallinderis. Hybrid
Adaptation Method and Directional Viscous

Pdsmatic:plane_id=l 1.55e-4 1.57e-5 Multigrid with Pdsmatic-Tetrahedral Meshes.
Prismatic: plane_id=2 1.53e-4 1.54e-5 AIAA paper AIAA-95-0670, 1995.

Prismatic: plane._id=3 1.50e-4 1.55e-5 [12] D. Mavriplis and V. Venkatakrishnan. A Unified
Cartesian: Az = 1/4 1.82e-4 1.60e-5 Multigrid Solver for the Navier-Stokes Equations

on Mixed Element Meshes. AIAA paper AIAA-
95-1666, 1995.
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